Mammalian achaete scute homolog 2 is expressed in the adult sciatic nerve and regulates the expression of Krox24, Mob-1, CXCR4, and p57kip2 in Schwann cells.
نویسندگان
چکیده
The molecular control mechanisms and regulatory molecules involved in nerve repair are not yet well known. Schwann cells have been attributed an important role in peripheral nerve regeneration; therefore, attention has been drawn to regulatory factors expressed by these glial cells. Here, we demonstrate that Mash2, a basic helix-loop-helix (bHLH) transcription factor previously shown to be crucial for placenta development, is expressed by Schwann cells of adult peripheral nerves. We observed that this gene is downregulated after nerve lesion and, using cDNA array hybridization technology, we could demonstrate that Mash2 is a regulator of Krox24, Mob-1, and CXCR4 expression in cultured Schwann cells. In addition, we provide strong evidence that Mash2 is a negative regulator of Schwann cell proliferation. Mash2 represents a first candidate for the missing class B bHLH proteins in peripheral nerves.
منابع مشابه
Electrophysiological Study of Sciatic Nerve Regeneration Through Tubes Seeded with Schwann Cells
A B S T R A C TIntroduction: Peripheral nerve injury is a common disorder and leads to permanent neurological defects. Schwann cells have been shown to have nerve repair after being transplanted in peripheral nerve injury. The aim of this study was to determine the beneficial effect of allograft Schwann cells on electrophysiological outcome after transection of the sciatic nerve in rats.Methods...
متن کاملStructural and functional improvement of snipped sciatic nerve after allograft injection of Schwann cells into fibrin scaffold
Background and Aim: Peripheral nerve injuries are among the most common types of injuries of the nervous system and are regarded as the main cause of disability. These injuries can lead to disorders in muscles movement and normal sense, and also painful neuropathy. Tissue engineering and stem cells therapy are among the treatment methods for these disorders. In this study we assessed sciatic ne...
متن کاملA chicken achaete-scute homolog (CASH-1) is expressed in a temporally and spatially discrete manner in the developing nervous system.
We have identified a basic helix-loop-helix encoding cDNA from embryonic chicken retina which shares sequence similarity with the achaete-scute family of genes of Drosophila. The deduced amino acid sequence of this chicken achaete-scute homolog (CASH-1) is identical, over the region encoding the basic helix-loop-helix domain, to the recently identified mammalian achaete-scute homolog (MASH-1) a...
متن کاملMammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells.
Using monoclonal antibodies, we have examined the expression pattern of MASH1, a basic helix-loop-helix protein that is a mammalian homolog of the Drosophila achaete-scute proteins. In Drosophila, achaete-scute genes are required for the determination of a subset of neurons. In the rat embryo, MASH1 expression is confined to subpopulations of neural precursor cells. The induction of MASH1 prece...
متن کاملEvaluation of the Functional Recovery in Sciatic Nerve Injury following the Co-transplantation of Schwann and Bone Marrow Stromal Stem Cells in Rat
Introduction: Transplantation of bone marrow stromal cells (BMSCs) or Schwann cells (SCs) can increase axonal regeneration in peripheral nerve injuries. Based on our previous investigations, the goal of the present work was to examine the individual and synergistic effects of the two different cell types in sciatic nerve injury . We pursued to evaluate the effects of BMSCs and SCs co-transplant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 17 شماره
صفحات -
تاریخ انتشار 2002